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Abstract  
 
Hurricanes are the most destructive natural disasters in the United States. The exposure of 
agricultural production systems to hurricanes varies between regions in contrast to global risks 
like commodity price volatility and international trade policies. The regional differences in 
hurricane exposure may lead to heterogeneity in crop insurance premium rates. This work aims 
to measure the impact of hurricane incidence on crop insurance premium rates for crops grown 
in the Mississippi Delta. We leverage a county-month panel of insurance losses spanning 2002-
2021 from the USDA-RMA, and daily data from the NOAA National Hurricane Center, to 
construct novel measures for hurricane treatment assignment under a Difference-in-Differences 
identification strategy. We find hurricane incidence results in increases to crop insurance 
premium rates in treated counties relative to untreated counties. The way in which hurricane 
treatment is measured matters with a conservative measure of treatment producing effects 
exhibiting downward attenuation bias and suggest a preferred measure which accounts for the 
dynamic changes in the scope of a hurricane over its life. We also find hurricane incidence to 
result in heterogeneous treatment effects between crops which provide implications for HIP-WI 
insurance availability and catastrophic loading in premium rating. 
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1 Introduction 

  Hurricanes are the most destructive natural disasters in the United States. In 2021 alone, 

hurricanes caused $145 billion in total damages to commercial and personal property, making it 

the third most costly hurricane season on record and the seventh straight year in which 10 or 

more one-billion-dollar events occurred (NOAA Office for Coastal Management, 2022). 

Furthermore, due to the well documented relationship between increasing sea surface 

temperatures and greater hurricane incidence in the Atlantic Ocean basin, these catastrophic 

events are likely to increase in frequency and magnitude in the coming years due to climate 

change (Webster, et al., 2005; Trenberth, 2005; Emanuel, 2005). Despite the scale and urgency 

of this threat, relatively little attention has been given to measuring how hurricanes impact the 

riskiness of U.S. crop production.  

In contrast to global risks like commodity price volatility and international trade policies, 

exposure to extreme weather like hurricanes varies across regions (Hardaker, Lien, and 

Anderson, 2015). For example, multiple hurricanes occasionally strike the same area during a 

single hurricane season (NOAA National Hurricane Center, 2022). One of the primary ways in 

which crop producers manage the risk of hurricanes is by purchasing crop insurance. The price 

producers pay per dollar of liability for crop insurance, known as a premium rate, varies 

geographically as a function of the regional riskiness in agricultural production (Biram, et al., 

2022). As such, an increase in the frequency of hurricanes could drive up premium rates. To 

illustrate this possibility, we display county-level base premium rates with the paths of 

hurricanes which made landfall in our study area, the Mississippi Delta region, between 2002 

and 2021 in Figure 1. In addition to region-specific risks including local climate and catastrophic 

weather events, variation in crop insurance premium rates can also be driven by heterogeneity in 
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farm-level characteristics such as soil type (Chen and Chang, 2005; Miller, Tack, and Bergtold, 

2020; Tsiboe and Tack, 2021). Therefore, to understand the implications of increasing hurricane 

incidence and magnitude on the riskiness of crop production, the impact of hurricanes must be 

disentangled from these alternative sources of risk. 

 

Figure 1. Spatial Relationship Between Average Corn Crop Insurance Base Premium Rates 
and Hurricane Incidence in the Mississippi Delta Region (2002-2021) This figure gives the 
county-specific base premium rates averaged across both irrigated and nonirrigated corn and the 
6-hour storm tracks for hurricanes to make landfall in the Mississippi Delta region over the 
period 2002-2021. We note the base premium rate is interpreted as the amount of actuarially fair 
premium paid per dollar of purchased liability. (Source: USDA-RMA and NOAA National 
Hurricane Center, 2022) 
 

 In this paper, we measure the impact of hurricane incidence to on-farm damages for 

crops grown in the Mississippi Delta region (i.e., Arkansas, Louisiana, and Mississippi), an area 

which has experienced 30 hurricanes and tropical storms spanning 2002-2021 (see Figure 2). 

Previous works relevant to this question fall into two veins of literature which include the 

implications of climate change on increased tropical storm incidence and the impact of this 
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incidence on crop yield variability. Prior research has measured the impacts of climate change on 

hurricane frequency and intensity through changes in maximum wind speeds and simulating 

storm tracks (Boose et al, 2004; Emanuel et al., 2005; Jagger and Elsner, 2006). Boose et al. 

(2004) estimate maximum sustained wind speeds and reconstruct hurricane storm tracks to 

model hurricane damages as a function of wind speeds. Emanuel et al. (2005) produce synthetic 

hurricane tracks to assess hurricane risk and damages using a power dissipation index based on a 

maximum wind speed. In the area we study, Jagger and Elsner (2006) show that among 

hurricanes making landfall in the United States, hurricanes with the greatest wind speeds are 

experienced in the Gulf of Mexico with category 4 and 5 hurricanes estimated to strike at least 

once every 10 years. 

 

Figure 2. Frequency of Hurricane Events to Make Landfall in Louisiana and Mississippi 
(2002-2021)  
Source: NOAA National Hurricane Center (2022) 
 

Other relevant research considers the impacts of climate change and extreme weather on 

mean yields and yield variability. In general, warmer temperatures tend to be associated with 

decreased yields in corn, cotton, and soybeans (Schlenker and Roberts, 2009) and rice (Peng et 
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al., 2004). In addition to reducing mean yields, climate change also increases yield variability 

(McCarl et al., 2008; Tack et al., 2012) which has been found to reduce producer welfare (Chen 

and McCarl, 2009; Strobl, 2012; Fuss et al., 2015). A few works have considered the impacts of 

tropical storms on rice production in the Pacific Ocean basin and find rice production to be most 

vulnerable in the heading stage (Masutomi et al., 2012; Blanc and Strobl, 2016). To our 

knowledge, there is only one other paper which specifically explores the implications of 

increased hurricane incidence for crop insurance premia (Chen and Chang, 2005). Chen and 

Chang (2005) estimate a crop yield response function and show increases in air temperature and 

levels of precipitation have raised yield variability and lowered yields of rice, corn, and adzuki 

beans grown in Taiwan. 

Our contributions to the growing literature on the impacts of climate change on yield 

variability are twofold. The first contribution is methodological whereby we use a quasi-

experimental approach to quantify the impact of hurricanes to on-farm damages in the 

Mississippi Delta using four different measures of hurricane treatment. The outcomes in our 

analyses are monthly crop losses attributed to specific causes of loss recorded at the county level 

in the USDA-RMA Summary of Business and Cause of Loss datasets spanning 2002-2021. Our 

Difference-in-Differences (DiD) framework compares the change in these monthly outcomes for 

treated counties which experienced tropical storm and hurricane force winds to control counties 

which did not. To determine the treatment and control counties, we use the daily HURDAT2 

data from the NOAA National Hurricane Center and create four different indicators assigning 

hurricane treatment.  

The second contribution is empirical in that we find the estimated impacts are sensitive to 

the type of hurricane treatment measure used and that impacts are heterogeneous between crops. 
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The first measure most conservatively assigns treatment likely leaving out treated counties and 

results in a 0.075 percentage point increase in county mean loss-cost ratios. The second measure 

assigns treatment to considerably more counties likely capturing untreated counties and results in 

a 0.05 percentage point increase in county mean loss-cost ratios. Using our preferred treatment 

measure, which dynamically accounts for the hurricane wind field extent over the life of each 

hurricane, we find hurricane incidence results in up to a 1.5-percentage point increase in mean 

loss-cost ratios (LCR) for yield and revenue insurances across crops predominantly grown in the 

region. We consider a fourth hurricane measure using the Hurricane Insurance Protection – Wind 

Index (HIP-WI) trigger file constructed by RMA, which assigns treatment to counties adjacent to 

treated counties under our preferred measure and find an impact similar to our preferred 

measure. This main result is robust to the causes of loss included in the LCR and additional 

months of losses accounting for potential delayed loss reporting error by insurance adjusters.  

We find heterogeneous impacts between crops, with cotton experiencing the greatest 

increase of 4-percentage points in the mean LCR.  Results suggest that crop choice may make 

certain regions especially vulnerable to tropical storms, and even though tropical storms may 

become more frequent everywhere, certain regions may experience greater impacts due to crop 

choice and proximity to the coast. Prior climate change research highlights how production of 

certain crops may improve given climate change predictions (Spencer and Polachek, 2015). We 

find results for the crop-specific regressions to be robust to the causes of loss included in the 

LCR. Finally, we use our estimated impacts to map the percentage of county base premium rates 

attributed to hurricane losses for each crop and discuss the implications for HIP-WI availability. 

The remainder of the paper is organized as follows. The next section describes the 

sources of data used to construct hurricane wind field measures and the measure we use to 



6 
 

represent crop insurance rates by specific causes of loss. We motivate identification of hurricane 

treatment effects on crop damages using DiD, discuss the assumptions necessary to conduct valid 

inference, and present a regression specification using a two-way fixed effects (TWFE) 

estimator. The fourth section provides main findings and discussion from regressions linking 

county specific LCRs to hurricane incidence. The last section concludes and provides 

implications of the estimated treatment effects of hurricane incidence on crop insurance premium 

rates. 

2 Data and Variable Construction 

We use data spanning 2002-2021 on county-level indemnities and liabilities from RMA to 

construct a measure of crop insurance premium rates and use daily historical hurricane tracker 

data from NOAA spanning the same period to construct a measure assigning hurricane treatment. 

We use the RMA Summary of Business (SOB) to obtain data on liabilities which will provide 

the information needed to form the sample by which we assign hurricane treatment. Data on 

cause-specific indemnities from the RMA Cause of Loss (COL) are used to construct cause-

specific Loss-Cost Ratios (LCRs), the ratio of indemnities to liabilities used to model crop 

insurance premium rates (Coble, et al., 2010). NOAA’s HURDAT-2 and Wind Field Advisory 

data contain latitude and longitude coordinates for the center of hurricanes, or centroids, at six-

hour time points. These data sets also include information on the length of wind field radii in 

each hurricane quadrant (i.e. NE, SE, SW, or NW). We use the radii indicating the maximum 

distance that experienced one-minute sustained wind speeds of 34-knots per hour for a given 

wind field to construct the hurricane treatment measure. 

We form our hurricane treatment assignment variables by considering only hurricanes 

and tropical storms which made landfall in Louisiana and Mississippi during years for which 



7 
 

wind field data are available. We further filter our sample to only include hurricanes with at least 

one recorded six-hour time stamp in Louisiana or Mississippi to guarantee we have at least one 

centroid to construct a wind field treatment measure. For a list of hurricanes included in the 

sample, see Table 1. Using liabilities from the SOB, we construct LCRs by only preserving 

counties for which there is liability recorded in a given year. From here, we combine1 the SOB 

and COL data to form cause2 specific LCRs at the county and month level by summing 

indemnities across causes associated with hurricane incidence. 

2.1 Hurricane Treatment Assignment 

 We construct four different measures of hurricane treatment assignment. The first 

treatment assignment measure is referred to as the Centroid Treatment (CT). For a given 

hurricane, the CT measure assigns treatment based on whether counties intersect the straight line 

connecting the centroids from each 6-hour timestamp within the NOAA HURDAT-2 tracker 

data. The second and third measures of treatment assignment rely on polygons created by 

connecting the points at the ends of the wind field radii. The method for creating these polygons 

and the resulting treatment measures is described in further detail below. For the second 

treatment assignment, Polygon Treatment (PT), counties are considered treated if they intersect 

with the path created by selecting the first polygon to intersect a county and interpolating this 

same polygon across all 6-hour timestamps. The third treatment measure, Interpolated Treatment 

(IT), allows the assignment polygons to change shape over time according to the observed wind 

 
1Importantly, if a county did not report a cause of loss associated with hurricane incidence, we would record the 
associated LCR as a zero rather than drop the observation since this may provide information which is needed for a 
counterfactual in our treatment effect estimation.  
2For this work we consider wind, excess precipitation, flood, and hurricane/tropical depression causes of loss to 
construct cause-specific LCRs. For a full list of the covered causes of loss see the RMA Loss Adjustment Manual 
(USDA-RMA, 2006).  
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field radii. Due to its ability to capture the dynamic nature of a hurricane, we believe the IT 

treatment measure is the most precise treatment assignment measure.   

 Last, the fourth hurricane treatment measure is called the RMA Treatment (RT) and is 

constructed using the HIP-WI trigger files from RMA. This measure assigns treatment to 

counties which triggered a HIP-WI indemnity for a given hurricane system and is like the IT 

measure which interpolates the path of a hurricane. However, RT assigns treatment to counties 

immediately adjacent to counties which triggered a HIP-WI indemnity based on an interpolation 

procedure and, as such, may assign treatment to counties which have not experienced weather 

resulting from a hurricane system. Visual representations for each hurricane treatment measure 

can be found in figure 3. 

Interpolation Procedure for PT and IT Treatment Assignments 

We construct a polygon wind field measure to assign county-level hurricane treatment 

using the wind field radii variables from the HURDAT-2 data. First, we calculate latitudes and 

longitudes for the corners of each quadrant of the wind field polygon by using the six-hour time 

stamps of latitudes and longitudes of the hurricane centroids and the rules of a right triangle 

whose legs are the same length. The longitude of each corner point in a quadrant is found by: 

𝐿𝐿𝐿𝐿𝐿𝐿ℎ𝑠𝑠𝑠𝑠
𝑗𝑗 = 𝐿𝐿𝐿𝐿𝐿𝐿ℎ

𝑗𝑗 +
𝑅𝑅ℎ𝑠𝑠𝑠𝑠
𝑗𝑗

√2
� 1

111.32∗cos�𝐿𝐿𝐿𝐿𝐿𝐿𝑡𝑡
𝑗𝑗∗ 𝜋𝜋
180� 

�  (1) 

Table 1. Hurricanes Which Made Landfall 
(2002-2021) 
Year Month Name Category 
2002 August Bertha TS 
2002 September Isidore* 2 
2002 October Lili* 3 
2003 July Bill TS 
2004 October Matthew* TS 
2005 July Cindy TS 
2005 July Dennis* 4 
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2005 August Katrina* 4 
2005 September Rita* 4 
2007 September Humberto* 1 
2008 September Gustav* 4 
2008 September Ike* 3 
2010 August Five TS 
2011 September Lee* TS 
2012 August Isaac* 1 
2015 June Bill* TS 
2017 June Cindy* TS 
2017 August Harvey* 3 
2017 September Irma 4 
2017 October  Nate 1 
2018 September Gordon* TS 
2019 July Barry* 1 
2019 October Olga* TS 
2020 September Beta* TS 
2020 June Cristobal TS 
2020 October Delta* 3 
2020 August Laura* 4 
2020 October Zeta 2 
2021 August Ida* 4 
2021 June Claudette TS 
*Indicates hurricane is in the sample used to estimate 
treatment effects 

where 𝐿𝐿𝐿𝐿𝐿𝐿ℎ𝑠𝑠𝑠𝑠
𝑗𝑗  is the longitude of a wind field corner point of hurricane event j at six-hour time 

stamp h, wind speed s for wind field quadrant 𝑞𝑞, where 𝑞𝑞𝑞𝑞[𝑁𝑁𝑁𝑁, 𝑆𝑆𝑆𝑆, 𝑆𝑆𝑆𝑆,𝑁𝑁𝑁𝑁]. 𝑅𝑅ℎ𝑠𝑠𝑠𝑠
𝑗𝑗  is the length 

of a wind field radius in kilometers, and 𝐿𝐿𝐿𝐿𝐿𝐿ℎ
𝑗𝑗and 𝐿𝐿𝐿𝐿𝐿𝐿ℎ

𝑗𝑗is the longitude and latitude of the 

hurricane centroid.  

The second term gives us the degrees longitude, moving west or east, that is required to 

arrive at the corner point of a given wind field quadrant. The fraction 
𝑅𝑅ℎ𝑠𝑠𝑠𝑠
𝑗𝑗

√2
 gives us the distance 

between the hurricane centroid and the new point of longitude, while the term in parentheses 

converts the distance to degrees longitude. The latitude of a corner point of a wind field quadrant 

can similarly be calculated as: 
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𝐿𝐿𝐿𝐿𝐿𝐿ℎ𝑠𝑠𝑠𝑠
𝑗𝑗 = 𝐿𝐿𝐿𝐿𝐿𝐿ℎ

𝑗𝑗 +
𝑅𝑅ℎ𝑠𝑠𝑠𝑠
𝑗𝑗

√2
� 1
111.32 

�   (2) 

Since some hurricanes travel relatively long distances across time stamps, we observe 

gaps in the polygon wind fields which likely leave out treated counties. We perform an 

interpolation of polygon wind fields to fill these gaps between observed hurricane centroids. We 

define an increment, 𝛿𝛿 ,which is a constant fraction3 of the distance between two observed 

hurricane centroids and create new centroids. We assume each observed wind polygon evolves 

smoothly over the distance between two empirical time stamps, meaning the length of the wind 

field radii change as a linear function of time between observed data points. Lastly, a county is 

assigned hurricane treatment if the interpolated wind field polygon intersects a county boundary 

at any point. The interpolation can be formally represented as: 

𝐿𝐿𝐿𝐿𝐿𝐿ℎ+𝑛𝑛∗𝛿𝛿
𝑗𝑗 =  ∑ 𝑛𝑛 ∗ 𝛿𝛿 ∗ �𝐿𝐿𝐿𝐿𝐿𝐿ℎ

𝑗𝑗 − 𝐿𝐿𝐿𝐿𝐿𝐿ℎ−1
𝑗𝑗 �

1
𝛿𝛿�

𝑛𝑛=1   (3) 

 
3 We use 𝛿𝛿 = 0.025 as our increment. This means that there will be 𝑛𝑛 = 40 interpolated points between the 
observed hurricane centroids observed at different six-hour time stamps. 
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Figure 3. County-level treatment assignment examples using Hurricane Delta The 
figure above gives a visual summary of the measures used to assign hurricane treatment 
effects. The counties which are in the sample for insurance but are untreated are given by 
the white fill color. The counties which are in the sample for insurance data and are 
treated are given by the red fill color. The red swaths overlaying the maps are the visual 
representations of the hurricane treatment measures which utilize the NOAA HURDAT-2 
data. Counties which have the red county borders and have a grey fill color were in the 
hurricane treatment path but are not in the insurance sample (i.e. there is no liability data 
for these counties). Counties with grey fill and black borders were not treated by a 
hurricane and were not in the insurance sample. 

2.2 Lost Cost Ratio Construction and Premium Rates 

In order to evaluate the impact of hurricanes on crop insurance premium rates we follow 

previous studies which apply the actuarial principal that the mean of the county-level LCR is the 

equivalent of a premium rate (Woodard, Sherrick, and Schnitkey, 2011; Rejesus, et al., 2015; 

Woodard and Verteramon-Chiu, 2017). Thus, when we run regressions with LCRs as the 

outcome variable we arrive at a treatment effect on the premium rate. Using the data on losses 

associated with hurricane incidence in a given month, one can identify the impact of hurricanes 

on base premium rates by measuring the impact of specific hurricanes on the portion of the LCR 

attributed to hurricane losses. This is necessary in identifying the impact of a specific 

catastrophic risk event because of the multiple peril nature of contemporary crop insurance 

products. 

We consider four different measures of LCRs which account for the different weather 

effects of a hurricane with each successive LCR containing more indemnities than the previous 

measure. The first LCR contains indemnities only recorded as a Hurricane/Tropical Depression 

cause of loss. The second LCR adds indemnities with a Wind cause of loss. The third LCR adds 

indemnities recorded as Excess Precipitation and Flooding causes of loss, while the fourth LCR 

contains indemnities for all recorded causes of loss. 
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In order to isolate losses that are only associated with a hurricane event, we sum 

indemnities across all losses in the months prior to the month in which a hurricane struck to 

create the cumulative LCR in the pre-period. The cause-specific LCR is formed by summing the 

indemnities by causes of loss for the specific LCR measure consider (i.e. wind vs. rain) in the 

post-treatment period and adding them to the pre-period cumulative LCR. Lastly, we pair 

hurricane-associated causes of loss in a given month with the hurricane which made landfall in 

the same month to arrive at a final panel dataset which gives county-level LCRs by treatment 

period for a given hurricane event and year.  

3 Empirical Strategy 

We use a Difference-in-Differences (DiD) identification strategy to isolate the treatment effects 

of hurricanes on crop insurance premium rates. Our approach differs from a typical DiD analysis 

in two ways. First, we are interested in the average effect of treatment across multiple hurricanes 

occurring in various years. Second, due to the seasonal nature of the LCR measures, we do not 

have a variable which provides a continuous index of time. To accommodate these differences, 

we specify the regression equation as: 

𝑌𝑌𝑖𝑖,𝑝𝑝,𝑡𝑡,ℎ
𝐶𝐶 = 𝜂𝜂ℎ ∗ �𝑑𝑑𝑖𝑖,𝑡𝑡,ℎ + 𝑝𝑝𝑡𝑡,ℎ + 𝛽𝛽ℎ𝑑𝑑𝑖𝑖,𝑡𝑡,ℎ𝑝𝑝𝑡𝑡,ℎ� + 𝜆𝜆𝑖𝑖 + 𝛾𝛾𝑡𝑡 + 𝜀𝜀𝑖𝑖,𝑝𝑝,𝑡𝑡,ℎ (4) 

where 𝑌𝑌𝑖𝑖,𝑝𝑝,𝑡𝑡,ℎ
𝐶𝐶  is the cumulative LCR specific to the causes of loss 𝐶𝐶𝐶𝐶[𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻,𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 +

𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊,𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 + 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 + 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅,𝐴𝐴𝐴𝐴𝐴𝐴 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿] in county i, period 𝑝𝑝 ∈ [𝑝𝑝𝑝𝑝𝑝𝑝,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝], and year 𝑡𝑡 

for hurricane ℎ. The 𝜂𝜂ℎ variable in equation 4 is a hurricane specific fixed effect. By pre-

multiplying the terms in parentheses by it, we ensure the changes in outcomes over time are 

compared within storms and not across them.  

The terms within parentheses in equation 4 constitute a standard two-period DiD 

analysis. The first term, 𝑑𝑑𝑖𝑖,𝑡𝑡,ℎ, is an indicator variable equal to one if insured county 𝑖𝑖 is treated at 
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any point during year 𝑡𝑡 by hurricane ℎ. Its inclusion addresses differences between treated and 

untreated counties that are invariant within the year that a specific hurricane occurs. The second, 

𝑝𝑝𝑡𝑡,ℎ, is an indicator variable equal to zero in the months before hurricane ℎ made landfall in year 

𝑡𝑡 and one in the month, or months, afterward. Including 𝑝𝑝𝑡𝑡,ℎ in our regression accounts for the 

evolution of LCRs during the year caused by factors other than hurricanes like weather. 𝛽𝛽ℎ, the 

coefficient for the interaction of 𝑑𝑑𝑖𝑖,𝑡𝑡,ℎ and 𝑝𝑝𝑡𝑡,ℎ, is the target estimand of the treatment-effect for a 

given hurricane ℎ. To recover the overall average treatment effect across all hurricanes, we 

calculate the average marginal effect of 𝑑𝑑𝑖𝑖,𝑡𝑡,ℎ𝑝𝑝𝑡𝑡,ℎ. 

The final three terms in equation 4, 𝜆𝜆𝑖𝑖, 𝛾𝛾𝑡𝑡, and 𝜀𝜀𝑖𝑖,𝑝𝑝,𝑡𝑡,ℎ are a county fixed effect, a year 

fixed effect, and an idiosyncratic error term, respectively. We include the county fixed effect, 𝜆𝜆𝑖𝑖, 

to control for time-invariant confounding factors influencing losses as well as the likelihood of 

being treated, such as proximity to the coast and regional differences in climate. Lastly, the year 

fixed effect, 𝛾𝛾𝑡𝑡, controls for unobserved heterogeneity which varies across years and is constant 

across counties, such as price levels. 

There are two critical identifying assumptions required for our DiD approach to recover 

the average treatment effect on the treated (ATT) of hurricanes on crop insurance premium rates: 

no anticipation and common trends. The no anticipation assumption implies producers do not 

alter their behavior in such a way as to increase their losses in anticipation of hurricane 

occurrence. The common trends assumption implies that losses associated with hurricane 

incidence evolve the same for treated and control counties in the absence of experiencing a 

hurricane. We do not see any reason for these assumptions to be violated after conditioning on 

county fixed effects. First, hurricanes occur randomly, and producers have little warning to be 

able to anticipate the event. Second, county-level fixed effects account for time-invariant 
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differences between counties and our choice of study area minimizes the possibility counties 

experience differential trends within a year. One reason parallel trends would be violated is if 

counties experience different weather or policies, but we think this is unlikely since we are 

considering a somewhat local impact across the Mississippi Delta region.   

4 Results and Discussion 

First, we present results for all indicators of hurricane treatment defined in the section above. 

Next, we discuss treatment effects across all crops and the robustness of our hurricane damage 

measure. Then, we consider treatment effect heterogeneity between crops. Finally, we discuss 

the implications of our results for the availability of HIP-WI insurance.  

4.1 Hurricane Treatment Tradeoffs 

The ATT estimates for each indicator of hurricane treatment are displayed in Figure 4. There are 

clear differences in estimated effects of hurricanes depending on the way in which we assign 

treatment. First, when the hurricane treatment assigns fewer treated units, there is a higher 

variance in the estimated ATT, and vice-versa (Figure 4). For example, results for the Centroid 

Treatment (CT) measure, which assigns treatment based on a line which connects the 6-hour 

timestamps of the hurricane centroid give larger confidence intervals relative to the Polygon 

Treatment (PT) measure, which assigns treatment based on the largest hurricane polygon to 

make landfall. We find the same pattern exists when comparing the interpolated hurricane 

treatment measure we propose (IT) and the RMA triggers (RT) based on Hurricane Insurance 

Protection, Wind Index insurance (HIP-WI) albeit much less so. This is because RT also 

considers counties adjacent to a county intersecting the hurricane field as treated, increasing the 

number of treated units. In contrast, IT only assigns treatment to counties which intersect with 

the hurricane field thereby reducing the number of treated units relative to RT. 
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In comparing the point estimates in figure 4, we see evidence of attenuation bias for some 

of our measures of hurricane treatment. For example, the broad treatment criteria for the Polygon 

Treatment (PT) measure produces a treated group which likely contains untreated counties by 

mistake. For the Centroid Treatment (CT) measure, only counties intersecting the line between 

centroids are assigned to the treatment group, so the control group will often incorrectly contain 

counties that experience significant damages. In both cases, the error in the hurricane treatment 

measure creates downward bias which results in ATT estimates that are small in magnitude. We 

believe IT to be the best hurricane treatment assignment because it correctly assigns treatment 

and reduces attenuation bias. This treatment measure best identifies counties which experience 

significant damages stemming from extreme weather that is directly and indirectly associated 

with hurricane systems and so assigns treatment to counties further inland regardless of the 

recorded wind speed. 

4.2 Hurricane Impacts on Premium Rates 

We first run regressions which pool observations across all crops in the sample and find there is 

a 1.5 percentage point increase in the mean LCR for counties in the 34-knot wind field relative to 

counties outside of the wind field (Figure 4). In other words, average hurricane specific LCRs for 

treated counties in the IT field are 1.5 percentage points higher than control counties outside of 

the IT field. We also perform a series of additional regressions to test that this result is robust to 

differences in the measure of hurricane damage. We find our main finding is robust to potential 

measurement error resulting from delayed reporting of causes of loss by crop insurance adjusters 

and to adding causes of loss other than Hurricane/Tropical Depression.  

Hurricane Damage Measure Robustness 
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Figures 5-7 contain results using the same model as those in Figure 4 but consider different 

forms of measurement for the hurricane damage measure (i.e., 𝑌𝑌𝑖𝑖,𝑝𝑝,𝑡𝑡
𝐶𝐶 ). We find the way in which 

we measure hurricane damages using the county-level LCR largely does not matter. In the initial 

regression, we only consider losses reported by the COL in the month in which a hurricane  

occurred. We recognize the potential measurement error in doing this since it may not be feasible 

for crop insurance adjusters to report losses in the month an event occurred, thereby reducing the 

actual losses associated with a hurricane for a given month. We see evidence of this in the COL 

data as Hurricane/Tropical Storm losses are sometimes reported in months following a hurricane 

event, despite no storm occurring in any of the subsequent months.  

We run regressions using LCRs which include 1 to 6 months of additional losses to test 

how delays in loss reporting by crop insurance adjusters may affect our results. These results 

may be observed by following the number of additional months presented along the x-axis for 

each hurricane treatment measure in figures 4-7. We limit the additional months to 6 because the 

earliest hurricane to make landfall in our sample does so in June. The estimates and overlapping 

confidence intervals for each hurricane treatment measure displayed in figures 4-7 suggest the 

impact on LCRs is largely robust to adding any number of additional months of losses. 

In addition to considering the timing of reported losses, we also consider robustness to 

the types of losses that are reported and used to construct LCRs. While there is a cause of loss 

code for Hurricane/Tropical Depression, crop insurance adjusters may report losses resulting 

from the hurricane system using a different cause of loss code such as Wind, Excess 

Precipitation, or Flooding. Therefore, we test whether including Wind, Excess Precipitation, or 

Flooding losses in the LCR affect our results, and we consider adding all causes of loss to the 

LCR as a final robustness check. We find the estimated ATTs are robust to including the 
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additional categories of hurricane-related losses in the LCR, and the ATTs are robust to the 

causes of loss are included which implies losses attributed to hurricanes are being accounted for 

correctly and insurance adjusters are not falsely categorizing losses. 

4.3 Heterogeneous Treatment Effects Across Crops 

We may dilute the treatment effect for specific crops if there are heterogeneous effects of 

hurricane and tropical storm systems by running regressions pooled across all crops in the 

sample. We run separate regressions for each crop and find significant variation in the ATT of 

being in the IT field across crops to test for heterogenous treatment effects. Results from these 

crop-specific regressions can be found in Appendix A. We find including additional months in 

the LCR used in each crop-specific regression may impact the mean ATT once there is more 

than one additional month included, indicating the delayed reporting of losses could impact 

estimated ATTs once we restrict the sample to one crop. 

The ATT for corn is nearly zero and remains the same across different forms of 

measurement of the LCR, while the ATT for soybeans is 1.5 percentage points in the base model 

specification (Figure A9 and A13, respectively). However, the ATT for soybeans doubles to 3 

percentage points by adding rainfall-induced losses (i.e., Excess Precipitation and Flooding) 

which suggests rainfall is the component of hurricane and tropical storm systems which 

influence losses most for soybeans (Figure A15). The ATT for corn remains the same across 

different forms of measurement of the LCR (Figures A9-A12). The ATT for rice is 1 percentage 

point and is robust to adding Wind losses and additional months of losses but appears to fall by 

0.025 percentage points once 4 additional months of losses are included in the LCR. We observe 

the largest impacts for cotton out of the four crops considered. The ATT for cotton is nearly 3 

percentage points in the base regression and is robust to adding additional months of losses and 
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Wind losses. In addition, we observe the ATT increases to nearly 4 percentage points once 

rainfall-induced losses are included in the LCR. This is largely because the boll formation, boll 

opening, and harvest generally occurs during July through October, which overlaps with 

hurricane season, making fiber loss through boll rot and fruit shedding more likely due to 

extreme weather (Ritchie, et al., 2007; Roughley, Smith and Allen, 2015; and Merritt, 2020). 

4.4 Implications for HIP-WI Availability 

We draw policy implications from the estimated ATTs by first estimating the damage component 

of the premium rate attributable to hurricanes across counties. We define the premium rate as the 

mean LCR, or the expected indemnity divided by liability (Woodard, Sherrick, and Schnitkey, 

2011; Rejesus, et al., 2015; Woodard and Verteramo-Chiu, 2017). So, to determine the portion of 

the premium rate attributable to hurricanes, we need to determine the hurricane- induced average 

indemnity for each county-crop combination and the county-specific probability of receiving the 

loss. Then, we can calculate the expected (i.e., average) LCR by multiplying the ATT with the 

probability of treatment for each county-crop combination.  

We estimate the base model from equation 4 by regressing the county-level LCR on 

hurricane treatment and controls for each crop in the sample to determine the county-specific 

indemnity. We use the ATT from each crop-specific regression as the average hurricane-induced 

indemnity in each county. Next, we obtain a sample estimate of the probability of treatment by 

constructing a sample of the IT treatment variable from 2002-2021 for each county. The sample 

estimate of the probability of treatment is found by counting the number of years a county is 

assigned treatment and dividing this number by the total number years in the sample (i.e., 20 

years). Last, we multiply the ATT from each crop-specific regression and the sample estimate of 
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probability of treatment for each county to arrive at the estimated damage component of the 

premium rate attributable to hurricanes. 

Results from this exercise are displayed in figures 8-11 which show the estimated portion 

of the county-level base premium rate attributable to hurricane damages. We calculate this 

portion by taking the ratio of the estimated damage component from the exercise above and the 

county-level base premium rate from RMA. For the base premium rate, we take the sum of the 

county-level reference rate and fixed rate following standard RMA actuarial procedures in 

estimating premium costs (Coble, et al., 2010). 

We observe the portion of the base premium rate attributable to hurricane damage is 

greatest in counties closer to the coast and that the magnitude to which hurricane damages 

impact base premium rates decreases for counties further from the coast. This is expected 

because hurricane systems lose power as they move inland, so coastal areas are more likely to be 

affected by the early stages of the storm with stronger wind speeds and heavier rainfall. 

However, while small in comparison to the counties near the coast, the damages experienced by 

inland counties producing cotton and soybeans are comparable to counties eligible to enroll in 

HIP-WI. Furthermore, we observe the county-level availability of risk protection offered by HIP-

WI crop insurance may limit the ability for a farm located in further inland to mitigate hurricane 

related losses.  

We use the HIP-WI eligibility file provided by USDA-RMA to determine which counties 

are eligible to purchase HIP-WI products. The dark black lines in figures 8-11 separate counties 

eligible to purchase HIP-WI products, south of the line, from those which are not, north of the 

line. Across the four crops considered, there is no discernible difference between counties 

immediately north and south of the HIP-WI eligibility line. This suggests counties at least 
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immediately above the line should be eligible to purchase HIP-WI to protect against the weather-

related losses associated with hurricane and tropical storms. Therefore, we recommend USDA-

RMA consider offering HIP-WI to counties immediately above the line highlighted in the figures 

below. 
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Figure 4. ATT of Hurricane Incidence on County-Level LCRs (All Crops) 
These regressions use the hurricane damage measure which only considers losses with 
Hurricane/Tropical Depression cause code. 
 

 
Figure 5. ATT of Hurricane Incidence on County-Level LCRs (All Crops) 
These regressions use the hurricane damage measure which only considers losses with 
Hurricane/Tropical Depression and Wind cause codes. 
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Figure 6. ATT of Hurricane Incidence on County-Level LCRs (All Crops) 
These regressions use the hurricane damage measure which only considers losses with 
Hurricane/Tropical Depression, Wind, Excess Precipitation, and Flooding cause codes. 

 

 
Figure 7. ATT of Hurricane Incidence on County-Level LCRs (All Crops) 
These regressions use the hurricane damage measure which only considers losses with all cause 
codes. 
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Figure 8. Hurricane Damages as a Portion of the County Base Rate (Rice) 
These results are from regressions estimating hurricane premium rates which includes losses for 
Hurricane/Tropical Depression, Wind, Excess Precipitation, and Flood causes of loss. County-
level base premium rates are for the 2022 insurance year and come from USDA-RMA Actuarial 
Data Master. 
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Figure 9. Hurricane Damages as a Portion of the County Base Rate (Cotton) 
These results are from regressions estimating hurricane premium rates which includes losses for 
Hurricane/Tropical Depression, Wind, Excess Precipitation, and Flood causes of loss. County-
level base premium rates are for the 2022 insurance year and come from USDA-RMA Actuarial 
Data Master. 
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Figure 10. Hurricane Damages as a Portion of the County Base Rate (Corn) 
These results are from regressions estimating hurricane premium rates which includes losses for 
Hurricane/Tropical Depression, Wind, Excess Precipitation, and Flood causes of loss. County-
level base premium rates are for the 2022 insurance year and come from USDA-RMA Actuarial 
Data Master.  
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Figure 11. Hurricane Damages as a Portion of the County Base Rate (Soybeans) 
These results are from regressions estimating hurricane premium rates which includes losses for 
Hurricane/Tropical Depression, Wind, Excess Precipitation, and Flood causes of loss. County-
level base premium rates are for the 2022 insurance year and come from USDA-RMA Actuarial 
Data Master. 
 

5 Conclusion 

We have estimated the impact of hurricane incidence on crop insurance premium rates 

for 21 storms which made landfall in the Mississippi Delta in the last twenty years. We leverage 

county-level panel data on indemnities and liabilities by cause of loss in each month spanning 

2002-2021 from RMA and daily hurricane best track data from the NOAA to construct a 

measure representative of crop insurance premium rates and a novel measure for hurricane 

treatment assignment. Under a DiD identification strategy, we find that hurricanes result in 

increases to crop insurance premium rates for yield and revenue insurances for major crops 

grown in the region. We find the way in which hurricane treatment is measured matters, and 
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measures which fail to account for the hurricane wind field tend to underestimate the impact of 

hurricane incidence on crop insurance premium rates. We also find estimated impacts to be 

greatest for soybeans and cotton with hurricane incidence accounting for up to 29% and 53% of 

county base premium rates, respectively. Findings are largely robust to losses included in the 

hurricane damage measure, as well as the number of additional months of losses included in the 

damage measure. 

Our findings align with previous studies which find decreases in mean yields and 

increases in yield variability caused by more frequent catastrophic weather events result in a fall 

in producer welfare and have implications for crop insurance premium rates (Chen and Chang, 

2005). Since premium rates are based on a 20-year farm-level loss history (Coble, et al., 2010), 

the increasing frequency of hurricanes and other catastrophic weather events will likely increase 

yield losses leading to increased premium rates. RMA has begun to address this increased risk 

with the introduction and recent expansion of the area product Hurricane Insurance Protection – 

Wind Index (HIP-WI), but introducing a single-peril area insurance product has not necessarily 

provide the coverage desired by producers. For example, Stacked Income Protection (STAX) 

designed for cotton has relatively high subsidy rates at 80% across all coverage levels yet few 

producers enroll in it (Yehouenou, et al, 2021). Similar to Chen and Chang (2005), our results 

suggest an extreme weather loading factor may be worthwhile to consider in the base premium 

rate calculation for the most popular plans of multi-peril insurance available (i.e. Yield 

Protection and Revenue Protection) rather than only introduce a new product. 

One limitation of this work is primarily concerned with measurement of hurricane 

treatment. One way we could improve the treatment assignment measure would be to include 

wind speed and consider the climatology of hurricanes. We currently ignore variables which 
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comprise a hurricane wind profile such as wind pressure and vertical shear which drive the 

intensity and direction of a hurricane. This analysis could also be built upon by including 

empirical state and climate division catastrophic loading factors to allow for comparison with the 

hurricane impacts we consider here. It is possible the hurricane effects we measure here may be 

included in a such a catastrophic loading factor, but since there is a specified range for the 

loading factor as it stands, future work should consider the magnitude by which the estimated 

effects here compare to that of current loading factors. With an ever-changing climate, 

measuring the impact of hurricanes and other extreme weather events on agricultural production 

is of the utmost importance as we improve the ability of producers to manage extreme weather 

risk. 
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