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Abstract

Hurricanes are the most destructive natural disasters in the United States. The exposure of
agricultural production systems to hurricanes varies between regions in contrast to global risks
like commodity price volatility and international trade policies. The regional differences in
hurricane exposure may lead to heterogeneity in crop insurance premium rates. This work aims
to measure the impact of hurricane incidence on crop insurance premium rates for crops grown
in the Mississippi Delta. We leverage a county-month panel of insurance losses spanning 2002-
2021 from the USDA-RMA, and daily data from the NOAA National Hurricane Center, to
construct novel measures for hurricane treatment assignment under a Difference-in-Differences
identification strategy. We find hurricane incidence results in increases to crop insurance
premium rates in treated counties relative to untreated counties. The way in which hurricane
treatment is measured matters with a conservative measure of treatment producing effects
exhibiting downward attenuation bias and suggest a preferred measure which accounts for the
dynamic changes in the scope of a hurricane over its life. We also find hurricane incidence to
result in heterogeneous treatment effects between crops which provide implications for HIP-WI
insurance availability and catastrophic loading in premium rating.
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1 Introduction

Hurricanes are the most destructive natural disasters in the United States. In 2021 alone,
hurricanes caused $145 billion in total damages to commercial and personal property, making it
the third most costly hurricane season on record and the seventh straight year in which 10 or
more one-billion-dollar events occurred (NOAA Office for Coastal Management, 2022).
Furthermore, due to the well documented relationship between increasing sea surface
temperatures and greater hurricane incidence in the Atlantic Ocean basin, these catastrophic
events are likely to increase in frequency and magnitude in the coming years due to climate
change (Webster, et al., 2005; Trenberth, 2005; Emanuel, 2005). Despite the scale and urgency
of this threat, relatively little attention has been given to measuring how hurricanes impact the
riskiness of U.S. crop production.

In contrast to global risks like commodity price volatility and international trade policies,
exposure to extreme weather like hurricanes varies across regions (Hardaker, Lien, and
Anderson, 2015). For example, multiple hurricanes occasionally strike the same area during a
single hurricane season (NOAA National Hurricane Center, 2022). One of the primary ways in
which crop producers manage the risk of hurricanes is by purchasing crop insurance. The price
producers pay per dollar of liability for crop insurance, known as a premium rate, varies
geographically as a function of the regional riskiness in agricultural production (Biram, et al.,
2022). As such, an increase in the frequency of hurricanes could drive up premium rates. To
illustrate this possibility, we display county-level base premium rates with the paths of
hurricanes which made landfall in our study area, the Mississippi Delta region, between 2002
and 2021 in Figure 1. In addition to region-specific risks including local climate and catastrophic

weather events, variation in crop insurance premium rates can also be driven by heterogeneity in



farm-level characteristics such as soil type (Chen and Chang, 2005; Miller, Tack, and Bergtold,
2020; Tsiboe and Tack, 2021). Therefore, to understand the implications of increasing hurricane
incidence and magnitude on the riskiness of crop production, the impact of hurricanes must be

disentangled from these alternative sources of risk.
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Figure 1. Spatial Relationship Between Average Corn Crop Insurance Base Premium Rates
and Hurricane Incidence in the Mississippi Delta Region (2002-2021) This figure gives the
county-specific base premium rates averaged across both irrigated and nonirrigated corn and the
6-hour storm tracks for hurricanes to make landfall in the Mississippi Delta region over the
period 2002-2021. We note the base premium rate is interpreted as the amount of actuarially fair
premium paid per dollar of purchased liability. (Source: USDA-RMA and NOAA National
Hurricane Center, 2022)

In this paper, we measure the impact of hurricane incidence to on-farm damages for
crops grown in the Mississippi Delta region (i.e., Arkansas, Louisiana, and Mississippi), an area
which has experienced 30 hurricanes and tropical storms spanning 2002-2021 (see Figure 2).
Previous works relevant to this question fall into two veins of literature which include the

implications of climate change on increased tropical storm incidence and the impact of this



incidence on crop yield variability. Prior research has measured the impacts of climate change on
hurricane frequency and intensity through changes in maximum wind speeds and simulating
storm tracks (Boose et al, 2004; Emanuel et al., 2005; Jagger and Elsner, 2006). Boose et al.
(2004) estimate maximum sustained wind speeds and reconstruct hurricane storm tracks to
model hurricane damages as a function of wind speeds. Emanuel et al. (2005) produce synthetic
hurricane tracks to assess hurricane risk and damages using a power dissipation index based on a
maximum wind speed. In the area we study, Jagger and Elsner (2006) show that among
hurricanes making landfall in the United States, hurricanes with the greatest wind speeds are
experienced in the Gulf of Mexico with category 4 and 5 hurricanes estimated to strike at least

once every 10 years.
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Figure 2. Frequency of Hurricane Events to Make Landfall in Louisiana and Mississippi
(2002-2021)
Source: NOAA National Hurricane Center (2022)

Other relevant research considers the impacts of climate change and extreme weather on

mean yields and yield variability. In general, warmer temperatures tend to be associated with

decreased yields in corn, cotton, and soybeans (Schlenker and Roberts, 2009) and rice (Peng et



al., 2004). In addition to reducing mean yields, climate change also increases yield variability
(McCarl et al., 2008; Tack et al., 2012) which has been found to reduce producer welfare (Chen
and McCarl, 2009; Strobl, 2012; Fuss et al., 2015). A few works have considered the impacts of
tropical storms on rice production in the Pacific Ocean basin and find rice production to be most
vulnerable in the heading stage (Masutomi et al., 2012; Blanc and Strobl, 2016). To our
knowledge, there is only one other paper which specifically explores the implications of
increased hurricane incidence for crop insurance premia (Chen and Chang, 2005). Chen and
Chang (2005) estimate a crop yield response function and show increases in air temperature and
levels of precipitation have raised yield variability and lowered yields of rice, corn, and adzuki
beans grown in Taiwan.

Our contributions to the growing literature on the impacts of climate change on yield
variability are twofold. The first contribution is methodological whereby we use a quasi-
experimental approach to quantify the impact of hurricanes to on-farm damages in the
Mississippi Delta using four different measures of hurricane treatment. The outcomes in our
analyses are monthly crop losses attributed to specific causes of loss recorded at the county level
in the USDA-RMA Summary of Business and Cause of Loss datasets spanning 2002-2021. Our
Difference-in-Differences (DiD) framework compares the change in these monthly outcomes for
treated counties which experienced tropical storm and hurricane force winds to control counties
which did not. To determine the treatment and control counties, we use the daily HURDAT?2
data from the NOAA National Hurricane Center and create four different indicators assigning
hurricane treatment.

The second contribution is empirical in that we find the estimated impacts are sensitive to

the type of hurricane treatment measure used and that impacts are heterogeneous between crops.



The first measure most conservatively assigns treatment likely leaving out treated counties and
results in a 0.075 percentage point increase in county mean loss-cost ratios. The second measure
assigns treatment to considerably more counties likely capturing untreated counties and results in
a 0.05 percentage point increase in county mean loss-cost ratios. Using our preferred treatment
measure, which dynamically accounts for the hurricane wind field extent over the life of each
hurricane, we find hurricane incidence results in up to a 1.5-percentage point increase in mean
loss-cost ratios (LCR) for yield and revenue insurances across crops predominantly grown in the
region. We consider a fourth hurricane measure using the Hurricane Insurance Protection — Wind
Index (HIP-WI) trigger file constructed by RMA, which assigns treatment to counties adjacent to
treated counties under our preferred measure and find an impact similar to our preferred
measure. This main result is robust to the causes of loss included in the LCR and additional
months of losses accounting for potential delayed loss reporting error by insurance adjusters.

We find heterogeneous impacts between crops, with cotton experiencing the greatest
increase of 4-percentage points in the mean LCR. Results suggest that crop choice may make
certain regions especially vulnerable to tropical storms, and even though tropical storms may
become more frequent everywhere, certain regions may experience greater impacts due to crop
choice and proximity to the coast. Prior climate change research highlights how production of
certain crops may improve given climate change predictions (Spencer and Polachek, 2015). We
find results for the crop-specific regressions to be robust to the causes of loss included in the
LCR. Finally, we use our estimated impacts to map the percentage of county base premium rates
attributed to hurricane losses for each crop and discuss the implications for HIP-WI availability.

The remainder of the paper is organized as follows. The next section describes the

sources of data used to construct hurricane wind field measures and the measure we use to



represent crop insurance rates by specific causes of loss. We motivate identification of hurricane
treatment effects on crop damages using DiD, discuss the assumptions necessary to conduct valid
inference, and present a regression specification using a two-way fixed effects (TWFE)
estimator. The fourth section provides main findings and discussion from regressions linking
county specific LCRs to hurricane incidence. The last section concludes and provides
implications of the estimated treatment effects of hurricane incidence on crop insurance premium

rates.

2 Data and Variable Construction

We use data spanning 2002-2021 on county-level indemnities and liabilities from RMA to
construct a measure of crop insurance premium rates and use daily historical hurricane tracker
data from NOAA spanning the same period to construct a measure assigning hurricane treatment.
We use the RMA Summary of Business (SOB) to obtain data on liabilities which will provide
the information needed to form the sample by which we assign hurricane treatment. Data on
cause-specific indemnities from the RMA Cause of Loss (COL) are used to construct cause-
specific Loss-Cost Ratios (LCRs), the ratio of indemnities to liabilities used to model crop
insurance premium rates (Coble, et al., 2010). NOAA’s HURDAT-2 and Wind Field Advisory
data contain latitude and longitude coordinates for the center of hurricanes, or centroids, at six-
hour time points. These data sets also include information on the length of wind field radii in
each hurricane quadrant (i.e. NE, SE, SW, or NW). We use the radii indicating the maximum
distance that experienced one-minute sustained wind speeds of 34-knots per hour for a given
wind field to construct the hurricane treatment measure.

We form our hurricane treatment assignment variables by considering only hurricanes

and tropical storms which made landfall in Louisiana and Mississippi during years for which



wind field data are available. We further filter our sample to only include hurricanes with at least
one recorded six-hour time stamp in Louisiana or Mississippi to guarantee we have at least one
centroid to construct a wind field treatment measure. For a list of hurricanes included in the
sample, see Table 1. Using liabilities from the SOB, we construct LCRs by only preserving
counties for which there is liability recorded in a given year. From here, we combine' the SOB
and COL data to form cause? specific LCRs at the county and month level by summing
indemnities across causes associated with hurricane incidence.
2.1 Hurricane Treatment Assignment

We construct four different measures of hurricane treatment assignment. The first
treatment assignment measure is referred to as the Centroid Treatment (CT). For a given
hurricane, the CT measure assigns treatment based on whether counties intersect the straight line
connecting the centroids from each 6-hour timestamp within the NOAA HURDAT-2 tracker
data. The second and third measures of treatment assignment rely on polygons created by
connecting the points at the ends of the wind field radii. The method for creating these polygons
and the resulting treatment measures is described in further detail below. For the second
treatment assignment, Polygon Treatment (PT), counties are considered treated if they intersect
with the path created by selecting the first polygon to intersect a county and interpolating this
same polygon across all 6-hour timestamps. The third treatment measure, Interpolated Treatment

(IT), allows the assignment polygons to change shape over time according to the observed wind

Tmportantly, if a county did not report a cause of loss associated with hurricane incidence, we would record the
associated LCR as a zero rather than drop the observation since this may provide information which is needed for a
counterfactual in our treatment effect estimation.

2For this work we consider wind, excess precipitation, flood, and hurricane/tropical depression causes of loss to
construct cause-specific LCRs. For a full list of the covered causes of loss see the RMA Loss Adjustment Manual
(USDA-RMA, 2006).



field radii. Due to its ability to capture the dynamic nature of a hurricane, we believe the IT
treatment measure is the most precise treatment assignment measure.

Last, the fourth hurricane treatment measure is called the RMA Treatment (RT) and is
constructed using the HIP-WI trigger files from RMA. This measure assigns treatment to
counties which triggered a HIP-WI indemnity for a given hurricane system and is like the IT
measure which interpolates the path of a hurricane. However, RT assigns treatment to counties
immediately adjacent to counties which triggered a HIP-WI indemnity based on an interpolation
procedure and, as such, may assign treatment to counties which have not experienced weather
resulting from a hurricane system. Visual representations for each hurricane treatment measure
can be found in figure 3.

Interpolation Procedure for PT and IT Treatment Assignments

We construct a polygon wind field measure to assign county-level hurricane treatment
using the wind field radii variables from the HURDAT-2 data. First, we calculate latitudes and
longitudes for the corners of each quadrant of the wind field polygon by using the six-hour time
stamps of latitudes and longitudes of the hurricane centroids and the rules of a right triangle

whose legs are the same length. The longitude of each corner point in a quadrant is found by:

. .
j j hsq 1
LONysq = LON; + V2 <111.32*cos(LATj*l)> (1)

t 180

Table 1. Hurricanes Which Made Landfall
(2002-2021)

Year Month Name Category
2002  August Bertha TS
2002 September  Isidore* 2
2002  October Lili* 3
2003 July Bill TS
2004  October  Matthew* TS
2005 July Cindy TS
2005 July Dennis* 4



2005
2005
2007
2008
2008
2010
2011
2012
2015
2017
2017
2017
2017
2018
2019
2019
2020
2020
2020
2020
2020
2021
2021

August
September
September
September
September

August
September

August

June
June

August
September

October
September

July

October

September
June

October

August

October

August

June

Katrina*
Rita*
Humberto*
Gustav*
Ike*
Five
Lee*
Isaac*
Bill*
Cindy*
Harvey*
Irma
Nate
Gordon*
Barry*
Olga*
Beta*
Cristobal
Delta*
Laura*
Zeta
Ida*
Claudette

TS

*Indicates hurricane is in the sample used to estimate
treatment effects

where LON,{Sq

stamp A, wind speed s for wind field quadrant q, where qe[NE, SE,SW,NW]. R

is the longitude of a wind field corner point of hurricane event j at six-hour time

hsq 18 the length

of'a wind field radius in kilometers, and LON,{ and LAT,{ is the longitude and latitude of the

hurricane centroid.

The second term gives us the degrees longitude, moving west or east, that is required to

arrive at the corner point of a given wind field quadrant. The fraction

J
Rhsq . .
7, &ives us the distance

between the hurricane centroid and the new point of longitude, while the term in parentheses

converts the distance to degrees longitude. The latitude of a corner point of a wind field quadrant

can similarly be calculated as:
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Ry,
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Since some hurricanes travel relatively long distances across time stamps, we observe

LAT],,

= LAT] +
gaps in the polygon wind fields which likely leave out treated counties. We perform an
interpolation of polygon wind fields to fill these gaps between observed hurricane centroids. We
define an increment, § ,which is a constant fraction® of the distance between two observed
hurricane centroids and create new centroids. We assume each observed wind polygon evolves
smoothly over the distance between two empirical time stamps, meaning the length of the wind
field radii change as a linear function of time between observed data points. Lastly, a county is
assigned hurricane treatment if the interpolated wind field polygon intersects a county boundary

at any point. The interpolation can be formally represented as:

, 1 , ,
Lat), .s= Zn/fln « 8 * (Lat), — Lat],_,) 3)

3 We use § = 0.025 as our increment. This means that there will be n = 40 interpolated points between the
observed hurricane centroids observed at different six-hour time stamps.
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Centroid treatment (CT) measure Polygon treatment (PT) measure

36°N 36°N
34°N - 34°N -
12°N - 32°N -
30°N 30°N
1 1 1 1 1 1] 1 1 1 1 1 1 1] 1
94°W  93°W  92°W  91°W  90°W 89°W  8R°W 94°W  93°W  92°W  91°W  90°W 89°W  8R°W
Interpolated treatment (IT) measure RMA treatment (RT) measure
36°N 36°N
34°N = 340N .
32°N -
32°N -
30°N
30°N
1 1 1 1 1 1 1 1 1 1 1 1 1 1
94°W  93°W  92°W  91°W  90°W  8O°W  88°W 94°W  93°W  92°W  91°W  90°W  8O°W  88°W
Treatment assignment Insurance data availability

I:I All treated counties Control counties with data
Treated counties with data
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Figure 3. County-level treatment assignment examples using Hurricane Delta The
figure above gives a visual summary of the measures used to assign hurricane treatment
effects. The counties which are in the sample for insurance but are untreated are given by
the white fill color. The counties which are in the sample for insurance data and are
treated are given by the red fill color. The red swaths overlaying the maps are the visual
representations of the hurricane treatment measures which utilize the NOAA HURDAT-2
data. Counties which have the red county borders and have a grey fill color were in the
hurricane treatment path but are not in the insurance sample (i.e. there is no liability data
for these counties). Counties with grey fill and black borders were not treated by a
hurricane and were not in the insurance sample.

2.2 Lost Cost Ratio Construction and Premium Rates

In order to evaluate the impact of hurricanes on crop insurance premium rates we follow
previous studies which apply the actuarial principal that the mean of the county-level LCR is the
equivalent of a premium rate (Woodard, Sherrick, and Schnitkey, 2011; Rejesus, et al., 2015;
Woodard and Verteramon-Chiu, 2017). Thus, when we run regressions with LCRs as the
outcome variable we arrive at a treatment effect on the premium rate. Using the data on losses
associated with hurricane incidence in a given month, one can identify the impact of hurricanes
on base premium rates by measuring the impact of specific hurricanes on the portion of the LCR
attributed to hurricane losses. This is necessary in identifying the impact of a specific
catastrophic risk event because of the multiple peril nature of contemporary crop insurance
products.

We consider four different measures of LCRs which account for the different weather
effects of a hurricane with each successive LCR containing more indemnities than the previous
measure. The first LCR contains indemnities only recorded as a Hurricane/Tropical Depression
cause of loss. The second LCR adds indemnities with a Wind cause of loss. The third LCR adds
indemnities recorded as Excess Precipitation and Flooding causes of loss, while the fourth LCR

contains indemnities for all recorded causes of loss.
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In order to isolate losses that are only associated with a hurricane event, we sum
indemnities across all losses in the months prior to the month in which a hurricane struck to
create the cumulative LCR in the pre-period. The cause-specific LCR is formed by summing the
indemnities by causes of loss for the specific LCR measure consider (i.e. wind vs. rain) in the
post-treatment period and adding them to the pre-period cumulative LCR. Lastly, we pair
hurricane-associated causes of loss in a given month with the hurricane which made landfall in
the same month to arrive at a final panel dataset which gives county-level LCRs by treatment

period for a given hurricane event and year.

3 Empirical Strategy

We use a Difference-in-Differences (DiD) identification strategy to isolate the treatment effects
of hurricanes on crop insurance premium rates. Our approach differs from a typical DiD analysis
in two ways. First, we are interested in the average effect of treatment across multiple hurricanes
occurring in various years. Second, due to the seasonal nature of the LCR measures, we do not
have a variable which provides a continuous index of time. To accommodate these differences,

we specify the regression equation as:
YSrn =m0 * (dign + Den + Brdienben) + i + Ve + €ipen 4)
where Yl-,Cp,t,h is the cumulative LCR specific to the causes of loss Ce[Hurricane, Hurricane +

Wind, Hurricane + Wind + Rain, All Losses] in county i, period p € [pre, post], and year t
for hurricane h. The 7, variable in equation 4 is a hurricane specific fixed effect. By pre-
multiplying the terms in parentheses by it, we ensure the changes in outcomes over time are
compared within storms and not across them.

The terms within parentheses in equation 4 constitute a standard two-period DiD

analysis. The first term, d; ; ,, is an indicator variable equal to one if insured county i is treated at
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any point during year t by hurricane h. Its inclusion addresses differences between treated and
untreated counties that are invariant within the year that a specific hurricane occurs. The second,
Pt n» 18 an indicator variable equal to zero in the months before hurricane h made landfall in year
t and one in the month, or months, afterward. Including p, j, in our regression accounts for the
evolution of LCRs during the year caused by factors other than hurricanes like weather. 3, the
coefficient for the interaction of d; ; ,, and p, p,, is the target estimand of the treatment-effect for a
given hurricane h. To recover the overall average treatment effect across all hurricanes, we
calculate the average marginal effect of d; . ¢ .

The final three terms in equation 4, 4;, ¥, and €;,, ; , are a county fixed effect, a year
fixed effect, and an idiosyncratic error term, respectively. We include the county fixed effect, 4;,
to control for time-invariant confounding factors influencing losses as well as the likelihood of
being treated, such as proximity to the coast and regional differences in climate. Lastly, the year
fixed effect, y;, controls for unobserved heterogeneity which varies across years and is constant
across counties, such as price levels.

There are two critical identifying assumptions required for our DiD approach to recover
the average treatment effect on the treated (ATT) of hurricanes on crop insurance premium rates:
no anticipation and common trends. The no anticipation assumption implies producers do not
alter their behavior in such a way as to increase their losses in anticipation of hurricane
occurrence. The common trends assumption implies that losses associated with hurricane
incidence evolve the same for treated and control counties in the absence of experiencing a
hurricane. We do not see any reason for these assumptions to be violated after conditioning on
county fixed effects. First, hurricanes occur randomly, and producers have little warning to be

able to anticipate the event. Second, county-level fixed effects account for time-invariant
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differences between counties and our choice of study area minimizes the possibility counties
experience differential trends within a year. One reason parallel trends would be violated is if
counties experience different weather or policies, but we think this is unlikely since we are

considering a somewhat local impact across the Mississippi Delta region.

4 Results and Discussion

First, we present results for all indicators of hurricane treatment defined in the section above.
Next, we discuss treatment effects across all crops and the robustness of our hurricane damage
measure. Then, we consider treatment effect heterogeneity between crops. Finally, we discuss
the implications of our results for the availability of HIP-WI insurance.

4.1 Hurricane Treatment Tradeoffs

The ATT estimates for each indicator of hurricane treatment are displayed in Figure 4. There are
clear differences in estimated effects of hurricanes depending on the way in which we assign
treatment. First, when the hurricane treatment assigns fewer treated units, there is a higher
variance in the estimated ATT, and vice-versa (Figure 4). For example, results for the Centroid
Treatment (CT) measure, which assigns treatment based on a line which connects the 6-hour
timestamps of the hurricane centroid give larger confidence intervals relative to the Polygon
Treatment (PT) measure, which assigns treatment based on the largest hurricane polygon to
make landfall. We find the same pattern exists when comparing the interpolated hurricane
treatment measure we propose (IT) and the RMA triggers (RT) based on Hurricane Insurance
Protection, Wind Index insurance (HIP-WI) albeit much less so. This is because RT also
considers counties adjacent to a county intersecting the hurricane field as treated, increasing the
number of treated units. In contrast, IT only assigns treatment to counties which intersect with

the hurricane field thereby reducing the number of treated units relative to RT.
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In comparing the point estimates in figure 4, we see evidence of attenuation bias for some
of our measures of hurricane treatment. For example, the broad treatment criteria for the Polygon
Treatment (PT) measure produces a treated group which likely contains untreated counties by
mistake. For the Centroid Treatment (CT) measure, only counties intersecting the line between
centroids are assigned to the treatment group, so the control group will often incorrectly contain
counties that experience significant damages. In both cases, the error in the hurricane treatment
measure creates downward bias which results in ATT estimates that are small in magnitude. We
believe IT to be the best hurricane treatment assignment because it correctly assigns treatment
and reduces attenuation bias. This treatment measure best identifies counties which experience
significant damages stemming from extreme weather that is directly and indirectly associated
with hurricane systems and so assigns treatment to counties further inland regardless of the
recorded wind speed.

4.2 Hurricane Impacts on Premium Rates

We first run regressions which pool observations across all crops in the sample and find there is
a 1.5 percentage point increase in the mean LCR for counties in the 34-knot wind field relative to
counties outside of the wind field (Figure 4). In other words, average hurricane specific LCRs for
treated counties in the IT field are 1.5 percentage points higher than control counties outside of
the IT field. We also perform a series of additional regressions to test that this result is robust to
differences in the measure of hurricane damage. We find our main finding is robust to potential
measurement error resulting from delayed reporting of causes of loss by crop insurance adjusters
and to adding causes of loss other than Hurricane/Tropical Depression.

Hurricane Damage Measure Robustness

16



Figures 5-7 contain results using the same model as those in Figure 4 but consider different
forms of measurement for the hurricane damage measure (i.e., Yi,cp,t). We find the way in which

we measure hurricane damages using the county-level LCR largely does not matter. In the initial
regression, we only consider losses reported by the COL in the month in which a hurricane
occurred. We recognize the potential measurement error in doing this since it may not be feasible
for crop insurance adjusters to report losses in the month an event occurred, thereby reducing the
actual losses associated with a hurricane for a given month. We see evidence of this in the COL
data as Hurricane/Tropical Storm losses are sometimes reported in months following a hurricane
event, despite no storm occurring in any of the subsequent months.

We run regressions using LCRs which include 1 to 6 months of additional losses to test
how delays in loss reporting by crop insurance adjusters may affect our results. These results
may be observed by following the number of additional months presented along the x-axis for
each hurricane treatment measure in figures 4-7. We limit the additional months to 6 because the
earliest hurricane to make landfall in our sample does so in June. The estimates and overlapping
confidence intervals for each hurricane treatment measure displayed in figures 4-7 suggest the
impact on LCRs is largely robust to adding any number of additional months of losses.

In addition to considering the timing of reported losses, we also consider robustness to
the types of losses that are reported and used to construct LCRs. While there is a cause of loss
code for Hurricane/Tropical Depression, crop insurance adjusters may report losses resulting
from the hurricane system using a different cause of loss code such as Wind, Excess
Precipitation, or Flooding. Therefore, we test whether including Wind, Excess Precipitation, or
Flooding losses in the LCR affect our results, and we consider adding all causes of loss to the

LCR as a final robustness check. We find the estimated ATTs are robust to including the
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additional categories of hurricane-related losses in the LCR, and the ATTs are robust to the
causes of loss are included which implies losses attributed to hurricanes are being accounted for
correctly and insurance adjusters are not falsely categorizing losses.

4.3 Heterogeneous Treatment Effects Across Crops

We may dilute the treatment effect for specific crops if there are heterogeneous effects of
hurricane and tropical storm systems by running regressions pooled across all crops in the
sample. We run separate regressions for each crop and find significant variation in the ATT of
being in the IT field across crops to test for heterogenous treatment effects. Results from these
crop-specific regressions can be found in Appendix A. We find including additional months in
the LCR used in each crop-specific regression may impact the mean ATT once there is more
than one additional month included, indicating the delayed reporting of losses could impact
estimated ATTs once we restrict the sample to one crop.

The ATT for corn is nearly zero and remains the same across different forms of
measurement of the LCR, while the ATT for soybeans is 1.5 percentage points in the base model
specification (Figure A9 and A13, respectively). However, the ATT for soybeans doubles to 3
percentage points by adding rainfall-induced losses (i.e., Excess Precipitation and Flooding)
which suggests rainfall is the component of hurricane and tropical storm systems which
influence losses most for soybeans (Figure A15). The ATT for corn remains the same across
different forms of measurement of the LCR (Figures A9-A12). The ATT for rice is 1 percentage
point and is robust to adding Wind losses and additional months of losses but appears to fall by
0.025 percentage points once 4 additional months of losses are included in the LCR. We observe
the largest impacts for cotton out of the four crops considered. The ATT for cotton is nearly 3

percentage points in the base regression and is robust to adding additional months of losses and
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Wind losses. In addition, we observe the ATT increases to nearly 4 percentage points once
rainfall-induced losses are included in the LCR. This is largely because the boll formation, boll
opening, and harvest generally occurs during July through October, which overlaps with
hurricane season, making fiber loss through boll rot and fruit shedding more likely due to
extreme weather (Ritchie, et al., 2007; Roughley, Smith and Allen, 2015; and Merritt, 2020).

4.4 Implications for HIP-WI Availability

We draw policy implications from the estimated ATTs by first estimating the damage component
of the premium rate attributable to hurricanes across counties. We define the premium rate as the
mean LCR, or the expected indemnity divided by liability (Woodard, Sherrick, and Schnitkey,
2011; Rejesus, et al., 2015; Woodard and Verteramo-Chiu, 2017). So, to determine the portion of
the premium rate attributable to hurricanes, we need to determine the hurricane- induced average
indemnity for each county-crop combination and the county-specific probability of receiving the
loss. Then, we can calculate the expected (i.e., average) LCR by multiplying the ATT with the
probability of treatment for each county-crop combination.

We estimate the base model from equation 4 by regressing the county-level LCR on
hurricane treatment and controls for each crop in the sample to determine the county-specific
indemnity. We use the ATT from each crop-specific regression as the average hurricane-induced
indemnity in each county. Next, we obtain a sample estimate of the probability of treatment by
constructing a sample of the IT treatment variable from 2002-2021 for each county. The sample
estimate of the probability of treatment is found by counting the number of years a county is
assigned treatment and dividing this number by the total number years in the sample (i.e., 20

years). Last, we multiply the ATT from each crop-specific regression and the sample estimate of
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probability of treatment for each county to arrive at the estimated damage component of the
premium rate attributable to hurricanes.

Results from this exercise are displayed in figures 8-11 which show the estimated portion
of the county-level base premium rate attributable to hurricane damages. We calculate this
portion by taking the ratio of the estimated damage component from the exercise above and the
county-level base premium rate from RMA. For the base premium rate, we take the sum of the
county-level reference rate and fixed rate following standard RMA actuarial procedures in
estimating premium costs (Coble, et al., 2010).

We observe the portion of the base premium rate attributable to hurricane damage is
greatest in counties closer to the coast and that the magnitude to which hurricane damages
impact base premium rates decreases for counties further from the coast. This is expected
because hurricane systems lose power as they move inland, so coastal areas are more likely to be
affected by the early stages of the storm with stronger wind speeds and heavier rainfall.
However, while small in comparison to the counties near the coast, the damages experienced by
inland counties producing cotton and soybeans are comparable to counties eligible to enroll in
HIP-WI. Furthermore, we observe the county-level availability of risk protection offered by HIP-
WI crop insurance may limit the ability for a farm located in further inland to mitigate hurricane
related losses.

We use the HIP-WI eligibility file provided by USDA-RMA to determine which counties
are eligible to purchase HIP-WI products. The dark black lines in figures 8-11 separate counties
eligible to purchase HIP-WI products, south of the line, from those which are not, north of the
line. Across the four crops considered, there is no discernible difference between counties

immediately north and south of the HIP-WI eligibility line. This suggests counties at least
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immediately above the line should be eligible to purchase HIP-WI to protect against the weather-
related losses associated with hurricane and tropical storms. Therefore, we recommend USDA-
RMA consider offering HIP-WI to counties immediately above the line highlighted in the figures

below.
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Figure 4. ATT of Hurricane Incidence on County-Level LCRs (All Crops)
These regressions use the hurricane damage measure which only considers losses with
Hurricane/Tropical Depression cause code.
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Figure 5. ATT of Hurricane Incidence on County-Level LCRs (All Crops)
These regressions use the hurricane damage measure which only considers losses with
Hurricane/Tropical Depression and Wind cause codes.
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Figure 6. ATT of Hurricane Incidence on County-Level LCRs (All Crops)
These regressions use the hurricane damage measure which only considers losses with
Hurricane/Tropical Depression, Wind, Excess Precipitation, and Flooding cause codes.
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Figure 7. ATT of Hurricane Incidence on County-Level LCRs (All Crops)
These regressions use the hurricane damage measure which only considers losses with all cause

codes.
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Figure 8. Hurricane Damages as a Portion of the County Base Rate (Rice)

These results are from regressions estimating hurricane premium rates which includes losses for
Hurricane/Tropical Depression, Wind, Excess Precipitation, and Flood causes of loss. County-
level base premium rates are for the 2022 insurance year and come from USDA-RMA Actuarial
Data Master.
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Figure 9. Hurricane Damages as a Portion of the County Base Rate (Cotton)

These results are from regressions estimating hurricane premium rates which includes losses for
Hurricane/Tropical Depression, Wind, Excess Precipitation, and Flood causes of loss. County-
level base premium rates are for the 2022 insurance year and come from USDA-RMA Actuarial
Data Master.
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Figure 10. Hurricane Damages as a Portion of the County Base Rate (Corn)

These results are from regressions estimating hurricane premium rates which includes losses for
Hurricane/Tropical Depression, Wind, Excess Precipitation, and Flood causes of loss. County-
level base premium rates are for the 2022 insurance year and come from USDA-RMA Actuarial
Data Master.
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Figure 11. Hurricane Damages as a Portion of the County Base Rate (Soybeans)

These results are from regressions estimating hurricane premium rates which includes losses for
Hurricane/Tropical Depression, Wind, Excess Precipitation, and Flood causes of loss. County-
level base premium rates are for the 2022 insurance year and come from USDA-RMA Actuarial
Data Master.

5 Conclusion

We have estimated the impact of hurricane incidence on crop insurance premium rates
for 21 storms which made landfall in the Mississippi Delta in the last twenty years. We leverage
county-level panel data on indemnities and liabilities by cause of loss in each month spanning
2002-2021 from RMA and daily hurricane best track data from the NOAA to construct a
measure representative of crop insurance premium rates and a novel measure for hurricane
treatment assignment. Under a DiD identification strategy, we find that hurricanes result in
increases to crop insurance premium rates for yield and revenue insurances for major crops

grown in the region. We find the way in which hurricane treatment is measured matters, and
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measures which fail to account for the hurricane wind field tend to underestimate the impact of
hurricane incidence on crop insurance premium rates. We also find estimated impacts to be
greatest for soybeans and cotton with hurricane incidence accounting for up to 29% and 53% of
county base premium rates, respectively. Findings are largely robust to losses included in the
hurricane damage measure, as well as the number of additional months of losses included in the
damage measure.

Our findings align with previous studies which find decreases in mean yields and
increases in yield variability caused by more frequent catastrophic weather events result in a fall
in producer welfare and have implications for crop insurance premium rates (Chen and Chang,
2005). Since premium rates are based on a 20-year farm-level loss history (Coble, et al., 2010),
the increasing frequency of hurricanes and other catastrophic weather events will likely increase
yield losses leading to increased premium rates. RMA has begun to address this increased risk
with the introduction and recent expansion of the area product Hurricane Insurance Protection —
Wind Index (HIP-WI), but introducing a single-peril area insurance product has not necessarily
provide the coverage desired by producers. For example, Stacked Income Protection (STAX)
designed for cotton has relatively high subsidy rates at 80% across all coverage levels yet few
producers enroll in it (Yehouenou, et al, 2021). Similar to Chen and Chang (2005), our results
suggest an extreme weather loading factor may be worthwhile to consider in the base premium
rate calculation for the most popular plans of multi-peril insurance available (i.e. Yield
Protection and Revenue Protection) rather than only introduce a new product.

One limitation of this work is primarily concerned with measurement of hurricane
treatment. One way we could improve the treatment assignment measure would be to include

wind speed and consider the climatology of hurricanes. We currently ignore variables which
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comprise a hurricane wind profile such as wind pressure and vertical shear which drive the
intensity and direction of a hurricane. This analysis could also be built upon by including
empirical state and climate division catastrophic loading factors to allow for comparison with the
hurricane impacts we consider here. It is possible the hurricane effects we measure here may be
included in a such a catastrophic loading factor, but since there is a specified range for the
loading factor as it stands, future work should consider the magnitude by which the estimated
effects here compare to that of current loading factors. With an ever-changing climate,
measuring the impact of hurricanes and other extreme weather events on agricultural production
is of the utmost importance as we improve the ability of producers to manage extreme weather

risk.

6 References

Biram, H., Coble, K., Harri, A., Park, E., & Tack, J. (2022). Mitigating Price and Yield Risk
Using Revenue Protection and Agriculture Risk Coverage. Journal of Agricultural and Applied
Economics, 1-15. doi:10.1017/aae.2022.8

Blanc, E., & Strobl, E. (2016). Assessing the impact of typhoons on rice production in the
Philippines. Journal of Applied Meteorology and Climatology, 55(4), 993-1007.

Boose, E. R. (2004). A method for reconstructing historical hurricanes. Hurricanes and
Typhoons: Past, Present, and Future, 99, 120.

Chen, C. C., & Chang, C. C. (2005). The impact of weather on crop yield distribution in Taiwan:
some new evidence from panel data models and implications for crop insurance. Agricultural
economics, 33, 503-511.

Emanuel, K. (2005). Increasing destructiveness of tropical cyclones over the past 30
years. Nature, 436(7051), 686-688.

Emanuel, K., Ravela, S., Vivant, E., & Risi, C. (2006). A statistical deterministic approach to
hurricane risk assessment. Bulletin of the American Meteorological Society, 87(3), 299-314.

Fuss, S., Havlik, P., Szolgayova, J., Schmid, E., Reuter, W. H., Khabarov, N., ... & Kraxner, F.

(2015). Global food security & adaptation under crop yield volatility. Technological Forecasting
and Social Change, 98, 223-233.

29



Hardaker, J. B., Lien, G., Anderson, J. R., & Huirne, R. B. (2015). Coping with risk in
agriculture: Applied decision analysis. Cabi.

Jagger, T. H., & Elsner, J. B. (2006). Climatology models for extreme hurricane winds near the
United States. Journal of Climate, 19(13), 3220-3236.

Masutomi, Y., lizumi, T., Takahashi, K., & Yokozawa, M. (2012). Estimation of the damage
area due to tropical cyclones using fragility curves for paddy rice in Japan. Environmental
Research Letters, 7(1), 014020.

McCarl, B. A., Villavicencio, X., & Wu, X. (2008). Climate change and future analysis: is
stationarity dying?. American Journal of Agricultural Economics, 90(5), 1241-1247.

Merritt, M. (2020). Effect of hurricanes on cotton yield and output in Georgia and
Texas (Doctoral dissertation).

Miller, N., Tack, J., & Bergtold, J. (2021). The impacts of warming temperatures on US
Sorghum yields and the potential for adaptation. American Journal of Agricultural
Economics, 103(5), 1742-1758.

National Hurricane Center. National Hurricane Center. Retrieved May 9, 2022, from
https://www.nhc.noaa.gov/

Office for Coastal Management. Hurricane Costs. NOAA Office for Coastal Management.
Retrieved May 9, 2022, from https://coast.noaa.gov/states/fast-facts/hurricane-costs.html

Peng, S., Huang, J., Sheehy, J. E., Laza, R. C., Visperas, R. M., Zhong, X., ... & Cassman, K. G.
(2004). Rice yields decline with higher night temperature from global warming. Proceedings of
the National Academy of Sciences, 101(27), 9971-9975.

Rejesus, R. M., Coble, K. H., Miller, M. F., Boyles, R., Goodwin, B. K., & Knight, T. O. (2015).
Accounting for weather probabilities in crop insurance rating. Journal of Agricultural and
Resource Economics, 306-324.

Roughley, N., Smith, L., & Allen, S. (2015). Integrated disease management for: Boll rot, seed
rot, and tight lock. Cotton Info Fact Sheet.
https://cottoninfo.com.au/sites/default/files/documents/BollR0t%20SeedRot.pdf

Ritchie, G.L., Bednarz, Jost, and Brown. (2007) Cotton Growth and Development. University of
Georgia, Crop and Soil Science, Athens, GA, p. 12. https://hdl.handle.net/10724/12192

Schlenker, W., & Roberts, M. J. (2009). Nonlinear temperature effects indicate severe damages

to US crop yields under climate change. Proceedings of the National Academy of
sciences, 106(37), 15594-15598.

30


https://www.nhc.noaa.gov/
https://coast.noaa.gov/states/fast-facts/hurricane-costs.html
https://cottoninfo.com.au/sites/default/files/documents/BollRot%20SeedRot.pdf
https://hdl.handle.net/10724/12192

Strobl, E. (2012). The economic growth impact of natural disasters in developing countries:
Evidence from hurricane strikes in the Central American and Caribbean regions. Journal of
Development economics, 97(1), 130-141.

Tack, J., Harri, A., & Coble, K. (2012). More than mean effects: Modeling the effect of climate
on the higher order moments of crop yields. American Journal of Agricultural Economics, 94(5),
1037-1054

Tsiboe, F., & Tack, J. (2022). Utilizing Topographic and Soil Features to Improve Rating for
Farm-Level Insurance Products. American Journal of Agricultural Economics, 104(1), 52-69.
Trenberth, K. (2005). Uncertainty in hurricanes and global warming. Science, 308(5729), 1753-
1754.

Webster, P. J., Holland, G. J., Curry, J. A., & Chang, H. R. (2005). Changes in tropical cyclone
number, duration, and intensity in a warming environment. Science, 309(5742), 1844-1846.
Wooldridge, J. (2021). Two-way fixed effects, the two-way mundlak regression, and difference-
in-differences estimators. Available at SSRN 3906345.

Woodard, J. D., Sherrick, B. J., & Schnitkey, G. D. (2011). Actuarial impacts of loss cost ratio
ratemaking in US crop insurance programs. Journal of Agricultural and Resource Economics,
211-228.

Woodard, J. D., & Verteramo-Chiu, L. J. (2017). Efficiency impacts of utilizing soil data in the

pricing of the federal crop insurance program. American Journal of Agricultural
Economics, 99(3), 757-772.

31



	1 Introduction
	2 Data and Variable Construction
	2.1 Hurricane Treatment Assignment
	2.2 Lost Cost Ratio Construction and Premium Rates

	3 Empirical Strategy
	4 Results and Discussion
	4.1 Hurricane Treatment Tradeoffs
	4.2 Hurricane Impacts on Premium Rates
	4.3 Heterogeneous Treatment Effects Across Crops
	4.4 Implications for HIP-WI Availability

	5 Conclusion
	6 References

